合 海量数据使用dbms_parallel_execute执行并行更新
Tags: Oracledbms_parallel_execute海量数据处理
海量数据处理,是很多系统开发人员,有时候甚至是运维人员,经常面对的需求。接口海量数据文件加载入库、批量数据更新、阶段数据归档删除是我们经常遇到的应用需求。针对不同的实际情况,包括软硬件、运维环境、SLA窗口期要求,我们需要采用不同的策略和方法进行问题解决。
在笔者之前文章《Oracle中如何更新一张大表记录》(http://blog.itpub.net/17203031/viewspace-1061065/)中,介绍了以Oracle数据库端为中心,进行大表数据处理过程中的一些方法和考虑因素。简单的说,海量数据处理难点不在语句层面,而在如何平衡各种需求因素。比较常见的因素有如下:
ü 业务系统正常生产冲击。大数据操作绝大多数场景是在生产环境。在7*24可用性需求日益强化的今天,业务系统一个SQL运行之后,影响减慢核心操作速度,严重甚至系统崩溃,绝对不是我们运维人员希望见到的;
ü 操作窗口期长短。在相同的业务操作量的情况下,平缓化操作负载一定是以增加操作时间作为前提的。增加延长操作时间是否能够在维护窗口内完成,也是需要考量的问题;
ü 对数据一致性的影响。一些“流言”方法(如nologging),虽然可以减少操作负载,但是潜在会给系统备份连续性带来灾难影响;
此外,SQL语句本身优化,操作策略也会有一些可以提高的空间。但是,一些问题还是需要单纯的大量数据处理。当其他常规手段出尽的时候,在硬件条件允许下,并行、并发操作往往是不错的选择。
在11gR2中,Oracle为海量数据处理提供了很多方便的支持。工具包dbms_parallel_execute可以支持将海量数据分拆为独立的chunk任务,并行执行作业。本篇就详细介绍这个新特性的使用。
1、环境准备
实验环境为11.2.0.3。
SQL> select * from v$version;
BANNER
------------------------------------------
Oracle Database 11g Enterprise Edition Release 11.2.0.3.0 - Production
PL/SQL Release 11.2.0.3.0 - Production
CORE 11.2.0.3.0 Production
TNS for Linux: Version 11.2.0.3.0 - Production
NLSRTL Version 11.2.0.3.0 – Production
构造一张大表。说明:条件所限,笔者环境比较简单,一些性能方面的优势比较难体现出来。先创建出一个单独表空间。
SQL> create tablespace test datafile size 2G autoextend on
2 extent management local uniform size 1m
3 segment space management auto;
Tablespace created
SQL> create table t as select * from dba_objects;
Table created
SQL> insert into t select * from t;
75586 rows inserted
(一系列的insert操作……)
SQL> commit;
Commit complete
数据表T包括大约2千万条记录,占用空间体积在2G左右。
SQL> select count(*) from t;
COUNT(*)
----------
19350016
SQL> select bytes/1024/1024/1024, tablespace_name from dba_segments where owner='SYS' and segment_name='T';
BYTES/1024/1024/1024 TABLESPACE_NAME
2.0986328125 TEST
Dbms_parallel_execute并不是传统的多进程并行操作,本质上是通过作业管理器Schedule来完成系列作业的(在后文中会详细证明)。所以前提要求job_queue_processes参数设置不能为0。
SQL> show parameter job
NAME TYPE VALUE
job_queue_processes integer 1000
2、dbms_parallel_execute包执行介绍
Dbms_parallel_execute是Oracle 11g推出的一个全新并行操作接口。它的原理为:当Oracle需要处理一个大量数据处理,特别是update操作的时候,可以将其拆分为若干各chunk分块,以多进程作业(Schedule Job)分块执行操作。从而降低一次性undo的使用,更进一步的便于断点续作。
Dbms_parallel_execute包使用要满足两个条件:
ü 执行程序用户需要拥有create job系统权限;
ü Dbms_parallel_execute程序包执行中需要调用dbms_sql包的一些方法,所以也需要该程序包执行权限;
并行包的执行有两个问题需要调用者确定:chunk分割方法和并行作业进程个数。
传统的单线程执行策略中,无论任务多大,都是对应一个Server Process进行处理。如果调用了并行,会有对应的协调进程和工作进程存在(v$px_process)。
如果启用了并行执行,一个关键问题在于如何划分任务,将一个数据表更新操作划分为多个小数据集合操作。Dbms_parallel_execute包支持三种任务划分方法。
ü By_rowid方法:依据rowid将操作数据进行划分;
ü By_number_col方法:输入定义一个数字列名称,依据这个列的取值进行划分;
ü By_SQL语句方法:给一个SQL语句,用户可以帮助定义出每次chunk的起始和终止id取值;
在三种方法中,笔者比较推荐rowid方法,理由是条件要求低、操作速度快。如果操作过程中没有明确的对数据表作业,这种策略是首选。具体比较可以从下面的实验中看出。
确定了划分方法,还要确定每个chunk的大小。注意:这个chunk设置大小并不一定是每个chunk操作数据行的数量。针对不同的分区类型,有不同的策略。这个在下面实验中笔者也会给出明确的解析。
并行进程个数表示的是当“一块”任务被划分为“一堆”相互独立的任务集合之后,准备多少个工作进程进行工作。这个是并行包使用的关键,类似于并行度,是需要依据实际软硬件资源负载情况综合考虑。
长时间作业存在一个问题,就是调用用户希望随时了解执行情况。Oracle提供了两个数据视图user_parallel_execute_tasks和user_parallel_execute_chunks,分别查看Task执行情况和各个chunk执行完成情况。
在Oracle官方文档中,给出了调用dbms_parallel_execute包的方法流程,本文使用的也就是这个脚本的变种,特此说明。下面,我们先看第一种by rowid方法。
3、By Rowid划分chunk方法
Oracle中的rowid是数据实际物理位置的表示。借助rowid直接定位数据,是目前Oracle获取数据最快的方法。所以在RBO中,第一执行计划被确定为rowid访问方式。
依据Oracle文档提供的PL/SQL匿名块,修改处我们第一个rowid范围查询。
declare
vc_task varchar2(100);
vc_sql varchar2(1000);
n_try number;
n_status number;
begin
--Define the Task
vc_task := 'Task 1: By Rowid'; --Task名称
dbms_parallel_execute.create_task(task_name => vc_task); --手工定义一个Task任务;
--Define the Spilt
dbms_parallel_execute.create_chunks_by_rowid(task_name => vc_task,
table_owner => 'SYS',
table_name => 'T',
by_row => true,
chunk_size => 1000); --定义Chunk
vc_sql := 'update /+ ROWID(dda) /t set DATA_OBJECT_ID=object_id+1 where rowid between :start_id and :end_id';
--Run the task
dbms_parallel_execute.run_task(task_name => vc_task,
sql_stmt => vc_sql,
language_flag => dbms_sql.native,
parallel_level => 2); --执行任务,确定并行度
--Controller
n_try := 0;
n_status := dbms_parallel_execute.task_status(task_name => vc_task);
while (n_try<2 and n_status != dbms_parallel_execute.FINISHED) loop
dbms_parallel_execute.resume_task(task_name => vc_task);
n_status := dbms_parallel_execute.task_status(task_name => vc_task);
end loop;
--Deal with Result
dbms_parallel_execute.drop_task(task_name => vc_task);
end;
/
从调用过程来看,这个并行操作包括下面几个步骤:
ü 定义Task;
ü 确定chunk划分方法,定义每个chunk的范围信息;
ü 执行作业,确定并行作业进程数量;
这个调用过程和我们常见的并行方式有很大差异,类似于Oracle的Job Schedule机制。由于执行过程比较长,我们可以有比较从容的查看并行执行包的情况。
从user_parallel_execute_tasks中,看到当前作业的关键信息。注意:chunk_type表示的是采用什么样的划分方法。JOB_PREFIX对应的则是Schedule中的内容。
SQL> select task_name, chunk_type, JOB_PREFIX from user_parallel_execute_tasks;
TASK_NAME CHUNK_TYPE JOB_PREFIX
Task 1: By Rowid ROWID_RANGE TASK$_4
在user_parallel_execute_chunks中,作业的所有chunk划分,每个chunk对应的一行数据。其中包括这个chunk的起始和截止rowid。对应的chunk取值对应的就是每个chunk的数据行数。
SQL> select chunk_id, task_name, status, start_rowid, end_rowid from user_parallel_execute_chunks where rownum<10;
CHUNK_ID TASK_NAME STATUS START_ROWID END_ROWID
1 Task 1: By Rowid PROCESSED AAATLKAAHAAAACAAAA AAATLKAAHAAAACxCcP
2 Task 1: By Rowid PROCESSED AAATLKAAHAAAACyAAA AAATLKAAHAAAADjCcP
3 Task 1: By Rowid PROCESSED AAATLKAAHAAAADkAAA AAATLKAAHAAAAD/CcP
4 Task 1: By Rowid PROCESSED AAATLKAAHAAAAEAAAA AAATLKAAHAAAAExCcP
5 Task 1: By Rowid PROCESSED AAATLKAAHAAAAEyAAA AAATLKAAHAAAAFjCcP
6 Task 1: By Rowid PROCESSED AAATLKAAHAAAAFkAAA AAATLKAAHAAAAF/CcP
7 Task 1: By Rowid PROCESSED AAATLKAAHAAAAGAAAA AAATLKAAHAAAAGxCcP
8 Task 1: By Rowid PROCESSED AAATLKAAHAAAAGyAAA AAATLKAAHAAAAHjCcP
9 Task 1: By Rowid PROCESSED AAATLKAAHAAAAHkAAA AAATLKAAHAAAAH/CcP
9 rows selected
作为user_parallel_execute_chunks,一个很重要的字段就是status状态列,用于标注每个chunk的处理情况。我们可以依据这个字段来判断任务完成情况。
SQL> select status, count(*) from user_parallel_execute_chunks group by status;
STATUS COUNT(*)
ASSIGNED 2
UNASSIGNED 5507
PROCESSED 938
(过一会之后…….)
SQL> select status, count(*) from user_parallel_execute_chunks group by status;
STATUS COUNT(*)
ASSIGNED 2
UNASSIGNED 5441
PROCESSED 1004
从status字段,我们可以分析出并行作业工作的原理。每一个chunk记录在划分之后,都是设置为unassiged状态,包括起始和终止的id信息(rowid或者column_range)。每次处理的chunk是assigned状态,实验程序中我们设置parallel_level为2,所以每次都是2个chunk是assigned状态。处理结束之后,设置为processed状态。
海量数据更新最大的问题在于undo拓展的量,我们检查一下执行过程中的undo size情况。
SQL> select sum(bytes)/1024/1024 from dba_undo_extents where status='ACTIVE';
SUM(BYTES)/1024/1024
--------------------
SQL> select sum(bytes)/1024/1024 from dba_undo_extents where status='ACTIVE';
SUM(BYTES)/1024/1024
--------------------
16
SQL> select sum(bytes)/1024/1024 from dba_undo_extents where status='ACTIVE';
SUM(BYTES)/1024/1024
--------------------
10
每次的数据量都不大,说明每次都是一小块chunk的操作。也确定使用parallel执行的过程,是分步小块commit的过程。在job视图中,我们也可以明确的看出作为作业的信息。
SQL> select owner, job_name, JOB_ACTION, SCHEDULE_TYPE, state, last_start_date from dba_scheduler_jobs where job_name like 'TASK$_4%';
OWNER JOB_NAME JOB_ACTION SCHEDULE_TYPE STATE LAST_START_DATE
SYS TASK$_4_2 DBMS_PARALLEL_EXECUTE.RUN_INTERNAL_WORKER IMMEDIATE RUNNING 10-2月 -14 01.48.34.947417 下午 PRC
SYS TASK$_4_1 DBMS_PARALLEL_EXECUTE.RUN_INTERNAL_WORKER IMMEDIATE RUNNING 10-2月 -14 01.48.34.730487 下午 PRC
注意:传统的并行进程v$px_process中没有看到数据信息,说明并行程序包并不是Oracle传统的数据库并行方案。
SQL> select * from v$px_process;
SERVER_NAME STATUS PID SPID SID SERIAL#
执行结束信息:
25 --Controller
26 n_try := 0;
27 n_status := dbms_parallel_execute.task_status(task_name => vc_task);
28 while (n_try<2 and n_status != dbms_parallel_execute.FINISHED) loop
29 dbms_parallel_execute.resume_task(task_name => vc_task);
30 n_status := dbms_parallel_execute.task_status(task_name => vc_task);
31 end loop;
32
33 --Deal with Result
34 dbms_parallel_execute.drop_task(task_name => vc_task);
35 end;
36 /
PL/SQL procedure successfully completed
Executed in 944.453 seconds
更新2G数据一共使用945s,合计约16分钟。
从上面的数据视图和调用过程,我们可以得到如下结论:
对dbms_parallel_execute执行包而言,通过确定chunk方法和chunk size,可以将一个很大的数据集合划分为若干各小chunk集合,分步进行操作处理。代码中设置的parallel_level,体现在设置Job的个数上。启动作业任务后,Oracle并不是启动传统的并行机制,而是在Job Schedule的基础上创建parallel_level个数的作业,类型为立即执行。多个作业分别执行各个chunk的小块工作。使用Job Schedule的一个好处在于可以方便的进行作业resume和start过程。
下面我们讨论by number col和by SQL两种执行方法。
上篇我们讨论了dbms_parallel_execute的工作方法、使用流程和特点。本篇继续来讨论其他两种划分Chunk方式。说明:对每种划分策略执行过程中,笔者都进行了不同的实验,来说明其工作特点。
4、By Number Col划分Chunk方法
应该说,使用rowid进行数据表划分可以带来很多好处。每个chunk数据获取过程,本质上就是执行一个范围Range操作。对于rowid而言,直接通过范围检索的效率是相当高的。
与Rowid方法对应两种策略都是依据“数据表列范围”进行chunk划分。By Number Col的方法顾名思义,需要我们指定出一个数字类型列名称。Oracle会依据这个列取值进行划分。每个chunk实际上都是通过数字类型检索到的结果集合进行处理。
当然,这个过程必然伴随着我们对于“地势”条件的依赖。每次从上千万条记录中,FTS的检索出一个chunk数据显然是很费力的操作过程。最直接的优化手段就是索引和分区。注意:如果我们没有特殊的条件进行chunk划分辅助,一定要考虑by number col方式是否适合。
SQL> create index idx_t_id on t(object_id);
Index created
Executed in 107.282 seconds
SQL> exec dbms_stats.gather_table_stats(user,'T',cascade => true,degree => 2);
PL/SQL procedure successfully completed
Executed in 87.453 seconds
修改的脚本如下:
SQL> declare